Large-scale quantification of CVD graphene surface coverage.
نویسندگان
چکیده
The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale fabrication of graphene by the CVD process.
منابع مشابه
Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.
Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper cata...
متن کاملMixed multilayered vertical heterostructures utilizing strained monolayer WS2.
Creating alternating layers of 2D materials forms vertical heterostructures with diverse electronic and opto-electronic properties. Monolayer WS2 grown by chemical vapour deposition can have inherent strain due to interactions with the substrate. The strain modifies the band structure and properties of monolayer WS2 and can be exploited in a wide range of applications. We demonstrate a non-aque...
متن کاملUnderstanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene.
The non-covalent functionalisation of graphene is an attractive strategy to alter the surface chemistry of graphene without damaging its superior electrical and mechanical properties. Using the facile method of aqueous-phase functionalisation on large-scale CVD-grown graphene, we investigated the formation of different packing densities in self-assembled monolayers (SAMs) of perylene bisimide d...
متن کاملControllable and Rapid Synthesis of High-Quality and Large-Area Bernal Stacked Bilayer Graphene Using Chemical Vapor Deposition
Bilayer graphene has attracted wide attention due to its unique band structure and bandgap tunability under specific (Bernal or AB) stacking order. However, it remains challenging to tailor the stacking order and to simultaneously produce large-scale and high-quality bilayer graphene. This work introduces a fast and reliable method of growing high-quality Bernal stacked large-area (>3 in. × 3 i...
متن کاملGrowth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces
We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can significantly improve the thickness uniformity. As a result, oneor two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2013